On the relationship between minimum norm and linear prediction for spatial spectrum estimation
نویسنده
چکیده
The minimum norm method for spatial spectrum estimation is derived from the linear prediction method in exactly the same way as the MUSIC method is derived from the minimum variance method. The derivation consists of replacing the correlation with its noise subspace component and setting all noise eigenvalues to unity. This makes it simpler to understand the methods and their properties. This relationship also brings out the meaning of setting the first element to unity in the minimum norm method — it corresponds to the predicted element in linear prediction. There is also a parallel between properties: e.g. just as linear prediction has a lower detection threshold than minimum variance so does minimum norm compared to MUSIC. Thus the properties of the subspace methods seem to be ’inherited’ from the original non-subspace methods.
منابع مشابه
Spatial prediction of soil electrical conductivity using soil axillary data, soft data derived from general linear model and error measurement
Indirect measurement of soil electrical conductivity (EC) has become a major data source in spatial/temporal monitoring of soil salinity. However, in many cases, the weak correlation between direct and indirect measurement of EC has reduced the accuracy and performance of the predicted maps. The objective of this research was to estimate soil EC based on a general linear model via using se...
متن کاملDevelopment of an Index-based Regression Model for Soil Moisture Estimation Using MODIS Imageries by Considering Soil Texture Effects
Soil moisture content (SMC) is one of the most significant variables in drought assessment and climate change. Near-real time and accurate monitoring of this quantity by means of remote sensing (RS) is a useful strategy at regional scales. So far, various methods for the SMC estimation using a RS data have been developed. The use of spectral information based on a small range of electromagnetic...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملArray Signal Processing with Alpha Stable Distributions
x Introduction Literature Review Dissertation Organization and Contribution Abbreviations Array Signal Processing Fundamentals and Current Approaches Problem Formulation Maximum Likelihood DOA Estimation with Gaussian Distributions The Stochastic Maximum Likelihood Method The Deterministic Maximum Likelihood Method The Deterministic Cram er Rao Bound for Gaussian Noise Subspace Based DOA Estima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 85 شماره
صفحات -
تاریخ انتشار 2005